Massey logo
Home > College of Sciences > Institute of Fundamental Sciences >
Maths First > Online Maths Help > Algebra > Simple Expansions > Expanding a Pair of Brackets
SEARCH
MASSEY
MathsFirst logo College of Science Brandstrip
  Home  |  Study  |  Research  |  Extramural  |  Campuses  |  Colleges  |  About Massey  |  Library  |  Fees  |  Enrolment

 

Simple Expansions

Expanding a Pair of Brackets

By applying the distributive law and combining the two situations we dealt with in the previous section we have

(x+a)*(x+b)=x*(x+b)+a*(x+b)=x^2+b*x+a*x+a*b=x^2+(a+b)*x+a*b

(x+a)*(x-a)=x*(x-a)+a*(x-a)=x^2-x*a+a*x-a^2=x^2-a^2.

 

Example 2A.

Study the following expansions. Click on the equal signs to see the next step in the expansion:

 


(x + ) ( x + )        

 

Exercise 2A.

Expand the following expression, writing your answer in its simplest form. Be careful with your notation. Do not use spaces in your answer.


(x + ) ( x + )    =   


Example 2B.

Here are some harder examples:

(2*x+3)*(3*x+4)=2*x*(3*x+4)+3*(3*x+4)=6*x^2+8*x+9*x+12=6*x^2+17*x+12.

(-3*x+2)*(2*x-4)=-3*x(2*x-4)+2*(3*x-4)=-6*x^2+12*x+6*x-8=-6*x^2+18*x-8.

Study a few more expansions, clicking on the equal signs to see the next step:


( x + ) ( x + )      
                                                   

                                                   


 

 

Exercise 2B.

Expand the following expression, writing your answer in its simplest form. Do not use spaces in your answer and be careful of notation:


( x + ) ( x + )    =   

 


 

<< The Distributive Law | Expansion Index | Expanding a Square >>

 

   Contact Us | About Massey University | Sitemap | Disclaimer | Last updated: November 21, 2012     © Massey University 2003